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The increasing demand for environment-conscious chemical
processes has impelled us to explore truly efficient oxidation
methods using aqueous H2O2, an ideal oxidant in this context.1

Although a number of procedures for alcohol oxidation using
H2O2 and in situ-generated or preformed metal complexes have
been reported,2,3 they all remain to be improved for application
to practical organic synthesis. We here describe the no-solvent
oxidation of primary and secondary alcohols under entirely
halide-free conditions.4 This method is high-yielding, clean,
safe, operationally simple, and cost-effective and therefore meets
with the requirements of contemporary organic synthesis.
Simple secondary alcohols can be converted cleanly to

ketones under organic/aqueous biphasic conditions using 3-30%
H2O2 in the presence of a tungsten catalyst and a phase-transfer
catalyst (PTC) (eq 1). For example, when a mixture of 2-octanol

(100 g), 30% H2O2 (96 g), Na2WO4‚2H2O (0.5 g),5 and [CH3-
(n-C8H17)3N]HSO4 (0.7 g)1 (500:550:1:1 mol ratio) placed in a
500-mL, round-bottomed flask was stirred at 1000 rpm with a
magnetic stirrer at 90°C for 4 h, 2-octanone was produced in
97% yield (GLC analysis). Separation of the organic layer was
followed by washing with 100 mL of saturated aqueous Na2S2O3

and distillation (173°C) to give a pure product (93.9 g, 95%
yield). The oxidation produced little waste. The water phase
of the reaction mixture, combined with the distillation residue,
can be reused with renewed PTC and 30% H2O2, giving 86
and 92% yield in the second and third runs, respectively. To
obtain an acceptable yield and rate while avoiding any potential
complications, reaction at 90°C is recommended.6 Since
unproductive decomposition of H2O2 is negligible under such

W-catalyzed conditions, the oxidation requires only 1.1 molar
amounts of H2O2 per alcohol to obtain a satisfactory yield. Rapid
stirring is necessary to facilitate the biphasic reaction. Oxidation
of 2-octanol (100 g) using 3% H2O2 (958 g) occurs equally
well, giving 2-octanone in 95% yield (93.0 g). This procedure
may or may not be advantageous from a practical point of view,
because the content of active oxygen is lower than with 30%
H2O2.
This reaction system is entirely free from inorganic and

organic halides. The synthetic efficiency compares favorably
with existing methods that largely use quaternary ammonium
halides and chlorohydrocarbon solvents.2 Use of a lipophilic
quaternary ammoniumhydrogensulfateas PTC is crucial for
high reactivity, probably due to the sufficient acidity. The
maximum rate was obtained by reaction at an initial pH of 2.
[CH3(n-C8H17)3N]Cl and [CH3(n-C8H17)3N]2SO4were much less
reactive, giving 11 and 18% yield, respectively (1% yield
without PTC). The turnover number (TON) of the 2-octanol
oxidation, as defined as mols of product per mol of W,
approached 77 700, when oxidation was performed with an
alcohol:30% H2O2:W:PTC ratio of 200 000:300 000:1:100 (40%
yield). This TON value is two orders of magnitude higher than
any previously reported H2O2 oxidation.7 Venturello2f reported
that his no-solvent oxidation of 2-hexanol with 40% H2O2 and
isolated [CH3(n-C8H17)3N]3PO4[W(O)(O2)2]4 gave 2-hexanone
where TON ) 48.3/W in 96% (or 130/W and 18% in
benzene2g). Under our new conditions, 1-phenylethanol was
oxidized with an even higher TON, 179 000 (alcohol:W)
400 000:1, 45% yield).
The reaction does not normally use an organic solvent but,

if necessary, is achievable using toluene as solvent with a
crystalline alcohol, for example. Table 1 lists some examples
of 100 g-scale reactions. Oxidation of 2-ethyl-1,3-hexanediol
selectively gave 2-ethyl-1-hydroxy-3-hexanone, because the
second oxidation was slowed by the presence of the electrone-
gative keto group. Using this method,cis- and trans-4-tert-
butylcyclohexanol are oxidized at equal rates.9 In order to test
the tolerance of functional groups and also to confirm the
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(7) The highest reported value is 513, obtained with a large excess of
H2O2 and a RuCl3-[(CH3)2(n-C10H21)2N]Br catalyst system in CH2Cl2.2c
The best record with a W-based catalyst was 193/W atom in 1,2-
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Table 1. Oxidation of Secondary Alcohols with Aqueous
Hydrogen Peroxidea

aUnless otherwise stated, reaction was run using alcohol and 30%
H2O2 in a 1:1.1 molar ratio with stirring at 1000 rpm at 90°C for 4 h.
PTC ) [CH3(n-C8H17)3N]HSO4. b Isolated by distillation.cReaction
with 3% H2O2. d A 1:1 mixture of the cis and trans isomer.eToluene
(100 mL) was used as solvent.f Reaction for 1 h.
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catalytic activity in the presence of coordinative compounds,
2-octanol was oxidized in toluene containing an equimolar
amount of ethyl decanoate, ethyl benzoate, di-n-octyl ether, 1,2-
epoxydodecane, 2-methylcyclohexanone, or nonanenitrile. In
fact 2-octanone was obtained without problems in>92% yield,
while the latter compound was recovered in>95% yield.
Addition of 1 molar amount of butyramide, however, retarded
the reaction significantly, giving 2-octanone in a mere 18%
yield.
A major concern in H2O2 oxidation is the alcohol/olefin

chemoselectivity.1,2,8 This biphasic oxidation was initially
developed for olefin epoxidation1 but with an (aminomethyl)-
phosphonic acid additive for high selectivity.10 Now, the
removal of this additive has been found to significantly increase
the rate and selectivity of alcohol oxidation. Oxidation of 11-
dodecen-2-ol using 30% H2O2 with alcohol:H2O2:W:PTC )
500:750:1:1 (no solvent, 90°C, 3 h, 1000 rpm) selectively
afforded 11-dodecen-2-one (97% yield) with a little undesired
11,12-epoxydodecan-2-one (0.4%) (eq 2).11 In a similar manner,
reaction of 5-cyclohexadecenol (E:Z ) 2:1) with 5% H2O2 in
toluene gave 5-cyclohexadecenone with 98% selectivity at 100%

conversion. Interestingly, the initial rate of the alcohol oxidation
is enhanced bydecreasingthe H2O2 concentration. Under the
new conditions of alcohol oxidation using 5% H2O2, 2-octanol
is much more reactive than simple olefins. Relative rates (2-
octanol) 1.0; substrate:H2O2:W:PTC) 500:500:1:1, toluene,
110 °C, 1000 rpm) are 1-octene (0.036), (E)-3-octene (0.10),
(Z)-3-octene (0.15), 2-methyl-1-undecene (1,1-disubstituted ole-
fin, 0.094), 2-methyl-2-decene (trisubstituted olefin, 0.13), and
3,4-diethyl-3-hexene (tetrasubstituted olefin, 0.11). Olefinic
bonds in allylic alcohols are particularly reactive to epoxidation.1

1-Dodecen-3-ol, an allylic alcohol with a terminal olefinic bond,
was converted to the desired 1-dodecen-3-one in 80% yield (eq
3), contaminated with 1,2-epoxydodecan-3-ol (14%) and 1,2-

epoxydodecan-3-one (4%) (substrate:30% H2O2:W:PTC) 500:
750:1:1, 90°C, 3 h).12 On the other hand, 2-methyl-2-undecen-
4-ol possessing a trisubstituted CdC bond underwent selective
epoxidation (100% yield).
Primary alcohols are 4-5 times less reactive than secondary

ones. Significantly, however, they can be oxidized directly to
carboxylic acids (eq 4). Table 2 gives some examples. When

a mixture of 1-octanol (100 g), 30% H2O2 (218 g), Na2-
WO4‚2H2O (5 g), and [CH3(n-C8H17)3N]HSO4 (7 g) (50:125:
1:1 mol ratio) was heated at 90°C for 4 h with stirring at 1000
rpm, octanoic acid (96.5 g) was obtained in 87% isolated yield
after distillation. n-Octyl octanoate, a frequently obtainable
dimeric ester, was produced in only 2% yield. Reaction with
an alcohol:W ratio of 20 000:1 led to a TON as high as 3000
(15% yield).13 Oxidation obviously proceeds by way of octanal,
where the second oxidation via its hydrate is fast as a result of
the acidic aqueous conditions. Reaction of octanal with 30%
H2O2 in the presence of the W catalyst (aldehyde:H2O2:W:PTC
) 50:75:1:1, 90°C, 2 h) afforded octanoic acid in 84% yield.
â-Branched primary alcohols are oxidized to carboxylic acids
in a fair yield. Notably, benzyl alcohol is selectively convertible
to benzaldehyde by using 1 molar equiv of H2O2.
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(11) Reaction under the standard epoxidation conditions (alcohol:H2O2:
W:PTC:NH2CH2PO3H2 ) 100:110:2:1:1)1 gave a mixture of the enone
(39%), epoxy ketone (38%), and epoxy alcohol (2%).

(12) A decrease in the H2O2 concentration did not improve chemo-
selectivity.

(13) Oxidation with a Ru-based catalyst in CH2Cl2 gave a TON of 363.2c

Table 2. Oxidation of Primary Alcohols with Aqueous Hydrogen
Peroxidea

aUnless otherwise stated, reaction was run using alcohol and 30%
H2O2 in a 1:2.5 molar ratio with stirring at 1000 rpm at 90°C for 4 h.
PTC) [CH3(n-C8H17)3N]HSO4. b Isolated by distillation.c Isolated by
recrystallization.dReaction using alcohol and 30% H2O2 in a 1:1 molar
ratio. Benzoic acid was produced in<3% yield.
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